If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18=a^2
We move all terms to the left:
18-(a^2)=0
We add all the numbers together, and all the variables
-1a^2+18=0
a = -1; b = 0; c = +18;
Δ = b2-4ac
Δ = 02-4·(-1)·18
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*-1}=\frac{0-6\sqrt{2}}{-2} =-\frac{6\sqrt{2}}{-2} =-\frac{3\sqrt{2}}{-1} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*-1}=\frac{0+6\sqrt{2}}{-2} =\frac{6\sqrt{2}}{-2} =\frac{3\sqrt{2}}{-1} $
| 8(2x-3)=3(4x+8) | | 4(2x-8)=1/7(49x+10)+2 | | 2k+10=k | | 6x2−4x−8=−8x2+7x−1 | | 25=-10n+-35 | | -1/3+(-1/3)=x | | x*20+4=44 | | -7(x=1)-17=21+4 | | 3x/7+8=2 | | (-3)(2/5)(-20)=x | | -3x-14=13 | | (60)(2/5)=x | | (-3)(-20)=x | | 3x-6/2x^2-18=0 | | w=4/15=10/3 | | 5n^2-30n-80=0 | | 0=x^2+16x-152 | | 7-2x=15;-4 | | 5+3x=2x+8 | | (60-x)+(2x-6)+90=180 | | 8r=22 | | 2n-3/4=10/1/4 | | |5y-10|=15 | | 5x/7-2x=-3/14 | | 5x+40=7x+28 | | -1/2=6/18h | | 4x+8=63 | | 9u=7u+6 | | x*10=-10 | | 10/(x-3)=4 | | X^2-19x+400=0 | | -3+x/3=-13 |